Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.712
Filtrar
1.
Sci Signal ; 17(832): eadl4738, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626009

RESUMO

Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Camundongos , Animais , Núcleo Accumbens/metabolismo , Proteômica , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cromatina/metabolismo
2.
Immunity ; 57(4): 837-839, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599175

RESUMO

Activation of the peripheral immune system contributes to stress-related neuropsychiatric symptoms. Recently in Nature, Cathomas et al. demonstrate that stress-induced social avoidance is mediated by monocyte-derived MMP8 that remodels the extracellular space of the nucleus accumbens.


Assuntos
Depressão , Monócitos , Estresse Psicológico , Núcleo Accumbens
3.
Proc Natl Acad Sci U S A ; 121(16): e2307982121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593084

RESUMO

A major aspiration of investors is to better forecast stock performance. Interestingly, emerging "neuroforecasting" research suggests that brain activity associated with anticipatory reward relates to market behavior and population-wide preferences, including stock price dynamics. In this study, we extend these findings to professional investors processing comprehensive real-world information on stock investment options while making predictions of long-term stock performance. Using functional MRI, we sampled investors' neural responses to investment cases and assessed whether these responses relate to future performance on the stock market. We found that our sample of investors could not successfully predict future market performance of the investment cases, confirming that stated preferences do not predict the market. Stock metrics of the investment cases were not predictive of future stock performance either. However, as investors processed case information, nucleus accumbens (NAcc) activity was higher for investment cases that ended up overperforming in the market. These findings remained robust, even when controlling for stock metrics and investors' predictions made in the scanner. Cross-validated prediction analysis indicated that NAcc activity could significantly predict future stock performance out-of-sample above chance. Our findings resonate with recent neuroforecasting studies and suggest that brain activity of professional investors may help in forecasting future stock performance.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Núcleo Accumbens , Humanos , Previsões , Investimentos em Saúde
4.
Brain Behav ; 14(3): e3457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450910

RESUMO

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Assuntos
Cocaína , Proteína HMGB1 , Animais , Ratos , Núcleo Accumbens , Microglia , Receptor para Produtos Finais de Glicação Avançada , Cocaína/farmacologia
5.
Alcohol Alcohol ; 59(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38520481

RESUMO

AIMS: The treatment with the antibiotic rifampicin (Rif) led to a decrease in the frequency of neurodegenerative pathologies. There are suggestions that the mechanism of action of Rif may be mediated by its effect on toll-like receptor (TLR)4-dependent pathways. We evaluated the expression status of TLR4-dependent genes during abstinence from long-term alcohol treatments in the nucleus accumbens (NAc) of the rat brain, and also studied the effects of Rif to correct these changes. METHODS: The long-term alcohol treatment was performed by intragastric delivery of ethanol solution. At the end of alcohol treatment intraperitoneal injections of Rif (100 mg/kg) or saline were made. Extraction of the brain structures was performed on the 10th day of abstinence from alcohol. We used the SYBR Green qPCR method to quantitatively analyze the relative expression levels of the studied genes. RESULTS: The long-term alcohol treatment promotes an increase in the level of TLR4 mRNA and mRNA of its endogenous ligand high-mobility group protein B1 during abstinence drop alcohol in NAc of rats. The use of Rif in our study led to a decrease in the increased expression of high-mobility group protein B1, Tlr4, and proinflammatory cytokine genes (Il1ß, Il6) in the NAc of the rat brain during abstinence of long-term alcohol treatment. In addition, Rif administration increased the decreased mRNA levels of anti-inflammatory cytokines (Il10, Il11). CONCLUSION: The data obtained indicate the ability of Rif to correct the mechanisms of the TLR4 system genes in the NAc of the rat brain during alcohol abstinence.


Assuntos
Núcleo Accumbens , Rifampina , Animais , Ratos , Encéfalo , Etanol , Núcleo Accumbens/metabolismo , Rifampina/farmacologia , RNA Mensageiro/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Curr Biol ; 34(7): 1549-1560.e3, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458192

RESUMO

The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process relies on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood. The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that shapes motivated behaviors via its projections to the nucleus accumbens (NAc)1,2,3,4,5,6,7,8 and monitors internal state via interoceptive inputs from the hypothalamus and brainstem.3,9,10,11,12,13,14 Recent studies indicate that the PVT can be subdivided into two major neuronal subpopulations, namely PVTD2(+) and PVTD2(-), which differ in genetic identity, functionality, and anatomical connectivity to other brain regions, including the NAc.4,15,16 In this study, we used fiber photometry to investigate the in vivo dynamics of these two distinct PVT neuronal types in mice performing a foraging-like behavioral task. We discovered that PVTD2(+) and PVTD2(-) neurons encode the execution and termination of goal-oriented actions, respectively. Furthermore, activity in the PVTD2(+) neuronal population mirrored motivation parameters such as vigor and satiety. Similarly, PVTD2(-) neurons also mirrored some of these parameters, but to a much lesser extent. Importantly, these features were largely preserved when activity in PVT projections to the NAc was selectively assessed. Collectively, our results highlight the existence of two parallel thalamo-striatal projections that participate in the dynamic regulation of goal pursuits and provide insight into the mechanisms by which the brain tracks motivational states to shape instrumental actions.


Assuntos
Motivação , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Tálamo , Núcleos da Linha Média do Tálamo/fisiologia , Hipotálamo
7.
Pharmacol Rep ; 76(2): 338-347, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480667

RESUMO

BACKGROUND: Cocaine use disorder (CUD) remains a severe health problem with no effective pharmacological therapy. One of the potential pharmacological strategies for CUD pharmacotherapy includes manipulations of the brain glutamatergic (Glu) system which is particularly involved in drug withdrawal and relapse. Previous research indicated a pivotal role of ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic receptors' type 5 (mGlu5) receptors in controlling the reinstatement of cocaine. Stimulation of the above molecules results in the activation of the downstream signaling targets such as neuronal nitric oxide synthase (nNOS) and the release of nitric oxide. METHODS: In this paper, we investigated the molecular changes in nNOS in the prefrontal cortex and nucleus accumbens following 3 and 10 days of cocaine abstinence as well as the effectiveness of nNOS blockade with the selective enzyme inhibitor N-ω-propyl-L-arginine hydrochloride (L-NPA) on cocaine seeking in male rats. The effect of L-NPA on locomotor activity in drug-naïve animals was investigated. RESULTS: Ten-day (but not 3-day) cocaine abstinence from cocaine self-administration increased nNOS gene and protein expression in the nucleus accumbens, but not in the prefrontal cortex. L-NPA (0.5-5 mg/kg) administered peripherally did not change locomotor activity but attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue. CONCLUSIONS: Our findings support accumbal nNOS as an important molecular player for cocaine seeking while its inhibitors could be considered as anti-cocaine pharmacological tools in male rats.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Sprague-Dawley , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Encéfalo/metabolismo , Núcleo Accumbens/metabolismo , Comportamento de Procura de Droga , Autoadministração , Extinção Psicológica
8.
Behav Brain Res ; 465: 114965, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38522595

RESUMO

Brain areas important for social perception, social reward, and social behavior - collectively referred to as the social-decision-making network (SDN) - appear to be highly conserved across taxa. These brain areas facilitate a variety of social behaviors such as conspecific approach/avoidance, aggression, mating, parental care, and recognition. Although the SDN has been investigated across taxa, little is known about its functioning in reptiles. Research on the snake SDN may provide important new insights, as snakes have a keen social perceptual system and express a relatively reduced repertoire of social behaviors. Here, we present the results of an experiment in which ball pythons (Python regius) interacted with a same-sex conspecific for one hour and neural activation was investigated through Fos immunoreactivity. Compared to controls, snakes that interacted socially had higher Fos counts in brain areas implicated in social behavior across taxa, such as the medial amygdala, preoptic area, nucleus accumbens, and basolateral amygdala. Additionally, we found differential Fos immunoreactivity in the ventral amygdala, which facilitates communication between social brain areas. In many of these areas, Fos counts differed by sex, which may be due to increased competition between males. Fos counts did not differ in early sensory (i.e., vomeronasal) processing structures. As ball python social systems lack parental care, cooperation, or long-term group living, these results provide valuable insight into the basal functions of the vertebrate social decision-making network.


Assuntos
Encéfalo , Proteínas Proto-Oncogênicas c-fos , Masculino , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/metabolismo , Área Pré-Óptica/metabolismo , Núcleo Accumbens/metabolismo , Serpentes/metabolismo
9.
Appetite ; 197: 107317, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552365

RESUMO

Postprandial distress syndrome (PDS) is the most common functional dyspepsia (FD) subtype. Early satiety is one of the cardinal symptoms of the PDS subtype in FD patients. The heterogeneity of symptoms in FD patients hampered therapy for patients based on specific symptoms, necessitating a symptom-based understanding of the pathophysiology of FD. To investigate the correlation between reward circuit and symptom severity of PDS patients, seed (Nucleus accumbens, NAc, a key node in the reward circuit) based resting-state functional connectivity (FC) was applied in the neuroimaging data analysis. The results demonstrated that the patients with PDS manifested strengthened FC between NAc and the caudate, putamen, pallidum, amygdala, hippocampus, thalamus, anterior cingulate cortex (ACC), and insula. Moreover, the FC between NAc and ACC, insula, thalamus, and hippocampus exhibited significant positive associations with symptom severity. More importantly, the strengthened FC between NAc and the ACC, insula, amygdala, and hippocampus were found associated with the early satiety symptom of patients with PDS. This study indicated that the altered FC of reward circuit regions may play a role in the pathophysiology of patients with PDS, and some of the aberrant NAc-based FC within the reward circuit were more related to the early satiety of patients with PDS. These findings improve our symptom-based understanding of the central pathophysiology of FD, lay the groundwork for an objective diagnosis of FD, and shed light on the precise prescription for treating FD based on symptoms.


Assuntos
Dispepsia , Humanos , Dispepsia/complicações , Dispepsia/diagnóstico , Núcleo Accumbens , Tonsila do Cerebelo/diagnóstico por imagem , Neuroimagem
10.
Neuroreport ; 35(7): 486-498, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526939

RESUMO

This study aimed to investigate the effects of SIRT1 modulation on heroin addiction-like behavior and its possible biological mechanisms. Wild-type C57BL/6J and Sirt1loxp/loxp D1-Cre mice were used in this experiment, and Sirt1 loxp/loxp D1-Cre(-) mice were used as a control for conditional knockout mice. Mice were divided into saline control and heroin-dependent groups. Behavioral methods were used to record the withdrawal response, conditioned place preference (CPP) changes, and open field test results. Transmission electron microscopy (TEM) was used to observe the structure of autophagosomes in nucleus accumbens (NAc) neurons. The expression of SIRT1 and autophagy-related proteins and genes, such as LC3Ⅱ, ATG5 , and ATG7 , was detected in the NAc of each mouse group via western blot, real-time quantitative PCR (qPCR) analyzes, and immunofluorescence. The results of this experiment showed that compared with the saline group, mice in the wild-type heroin-dependent group showed marked withdrawal symptoms, with more autophagosomes observed in NAc via TEM. Compared with wild-type and Sirt1loxp/loxp D1-Cre(-) heroin-dependent groups, CPP formation was found to be reduced in the conditional knockout mouse group, with a significant decrease in spontaneous activity. Western blot, qPCR, and immunofluorescence results indicated that the expression of LC3Ⅱ, ATG-5, and ATG-7 was significantly reduced in the NAc of the Sirt1loxp/loxp D1-Cre(+) group. It was still, however, higher than that in the saline control group. These results suggest that inhibition of Sirt1 expression may prevent heroin-induced addiction-related behaviors via reducing D1 neuronal autophagy.


Assuntos
Dependência de Heroína , Núcleo Accumbens , Camundongos , Animais , Dependência de Heroína/metabolismo , Heroína , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Autofagia
11.
J Affect Disord ; 354: 239-246, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461902

RESUMO

Acute stress impairs reward processing. The nucleus accumbens (NAcc) plays an important role in the processing of primary rewards such as food. The present study investigates how acute stress affects the olfactory food reward processing in the NAcc using the representational similarity analysis. Forty-eight participants underwent an olfactory fMRI session following either an acute psychosocial stress (N = 24; stress group) or a control (N = 24; control group). Brain activation was recorded during the anticipatory and the perceptual phases of high-calorie food, low-calorie food, and non-food odor stimuli. Compared to the control group, the stress group rated the high-calorie food odor as significantly more pleasant (p = 0.005). In the NAcc, acute stress significantly reduced the dissimilarity of food and non-food odors in the perceptual phase (p = 0.027) and marginally reduced the dissimilarity of high- and low-calorie foods in the anticipatory phase (p = 0.095). Significant negative correlations were observed between the level of NAcc representational differentiation for high- and low-calorie food odors during perception and the difference in pleasantness ratings between high- and low-calorie food odors (r = -0.40, p = 0.005). These findings suggest that acute stress may impair participants' ability to discriminate between olfactory food rewards, leading individuals to seek out more palatable foods in stressful situations in order to maintain positive emotions.


Assuntos
Alimentos , Núcleo Accumbens , Humanos , Núcleo Accumbens/diagnóstico por imagem , Encéfalo/fisiologia , Olfato , Recompensa , Imageamento por Ressonância Magnética
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473854

RESUMO

Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.


Assuntos
Neuropeptídeos , Humanos , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Motivação , Interação Social , Núcleo Accumbens/metabolismo
13.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499566

RESUMO

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Assuntos
Cocaína , Receptores Opioides kappa , Ratos , Animais , Receptores Opioides kappa/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Motivação , Dopamina/farmacologia , Ratos Sprague-Dawley , Fenmetrazina/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Autoadministração
14.
Neuropharmacology ; 249: 109893, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428482

RESUMO

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Assuntos
Canabidiol , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens , Dor , Receptores de Dopamina D1/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Camundongos Transgênicos
15.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514654

RESUMO

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
16.
Addict Biol ; 29(3): e13382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488467

RESUMO

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Assuntos
Benzamidas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Metanfetamina/metabolismo , Núcleo Accumbens , Cálcio/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo
17.
Dev Psychobiol ; 66(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38533486

RESUMO

Exogenous oxytocin (OT) is widely used to induce or augment labor with little understanding of the impact on offspring development. In rodent models, including the prairie vole (Microtus ochrogaster), it has been shown that oxytocin administered to mothers can affect the nervous system of the offspring with long lasting behavioral effects especially on sociality. Here, we examined the hypothesis that perinatal oxytocin exposure could have epigenetic and transcriptomic consequences. Prairie voles were exposed to exogenous oxytocin, through injections given to the mother just prior to birth, and were studied at the time of weaning. The outcome of this study revealed increased epigenetic age in oxytocin-exposed animals compared to the saline-exposed group. Oxytocin exposure led to 900 differentially methylated CpG sites (annotated to 589 genes), and 2 CpG sites (2 genes) remained significantly different after correction for multiple comparisons. Differentially methylated CpG sites were enriched in genes known to be involved in regulation of gene expression and neurodevelopment. Using RNA-sequencing we also found 217 nominally differentially expressed genes (p<0.05) in nucleus accumbens, a brain region involved in reward circuitry and social behavior; after corrections for multiple comparisons 6 genes remained significantly differentially expressed. Finally, we found that maternal oxytocin administration led to widespread alternative splicing in the nucleus accumbens. These results indicate that oxytocin exposure during birth may have long lasting epigenetic consequences. A need for further investigation of how oxytocin administration impacts development and behavior throughout the lifespan is supported by these outcomes.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Feminino , Gravidez , Masculino , Humanos , Ocitocina/metabolismo , Mães , Núcleo Accumbens/metabolismo , Comportamento Social , Epigênese Genética , Arvicolinae
18.
Neurobiol Dis ; 194: 106482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522590

RESUMO

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Assuntos
Epilepsia do Lobo Temporal , Animais , Epilepsia do Lobo Temporal/patologia , Núcleo Accumbens/metabolismo , Parvalbuminas/metabolismo , Convulsões/patologia , Hipocampo/patologia , Neurônios GABAérgicos/metabolismo , Ácido Caínico/toxicidade , Modelos Animais de Doenças
19.
Eur J Neurosci ; 59(5): 982-995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378276

RESUMO

Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.


Assuntos
Ácido Glutâmico , Receptores de AMPA , Ratos , Animais , Masculino , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , N-Metilaspartato/farmacologia , Sinapses/fisiologia , Núcleo Accumbens , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Addict Biol ; 29(2): e13375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380802

RESUMO

Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Epigênese Genética , Células HEK293 , Morfina/farmacologia , Morfina/metabolismo , Núcleo Accumbens/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...